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SOME BASIC LAWS 011ISOTROPIC TURBULENT FLOW

By L. (3. Loit~ianskil .

,
SUMMfiY

An Inveetlgation ie made of the diffuei~ of artifi-
cially produoed turbulence behind screene or other turbu-
lence producers. After defining the fundamental aesumptlone
underlying the etatltatical turbulence theory more accurately,
the author proposes a method that permits inv~etlgation of
the d~ffuelon of turbulent dleturbancee of finite scale in
p+ac? of the IIpoint sourceh d16turbances coneldered by Von
Knrqaxs. The method Ie based on the authorte concept Of
Hd#a%ua?bance momentw as a certain theoretically well-founded
measure of turbulent dleturbancee. Incidentally, with the
object of familiarizing the reader with the fundamental of

.. the new theory, the auther gives-a presentation cf the funda-
.,;qentals of the theory In e form that le considered somewhat
,~~mpler than that given In existing papers.

..

. . . .0

. . . IMTRODUCTIOlt
...”.., ,... .

I~~r.e”c~rit,“y:eare, due chie?ly,tc the Inveatigatione of
Tayloqj(re$erence 1) -and Von Karman (reference 2), further
progr~~$ li.ae,~beenmad~ j~ the turbulence theoryO The -new
ideaeqq~e:.~.qqed, eseetitially, on the statistical turbulence
theor~’p~~.e~nted eeveral decadeg ago by the great Soviet
phyeioi”st ‘$ifedmann, whose premature death occurred in 1925,
and by Keller (reference 3),

:,1.-
The pri~cipal difference between the new method and

previoue ~tatle-c’kl methode lies in the introduction, to-
gether with the UsVal correlation moments of the velocity
at a given point ‘of the flow, of special ‘association m-
mentsn (Frledmann~s terminology) between the velocity co-
ponente at two d$~~er~nt points .of the flow qt”corresponding
instants of tirneo:..Thia Idea h~E proved ite~lf.very fruitful

#
?: ..#.’-..

*Repent I!loQ440, of the “Central Aero-Hydrodynamlcal
Inetitute, Moscow, 1939, .).-.

f:;.”:.
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and has enabled Taylor to develop the theory of the diseip-
tlon of turbulent disturbancdm behind aoreene and enabled Von
K&m&n “to give a general equation for turbulanae propagation.

The conaept of atamoaiatlon moment makes it possible to
determine such an important magnitude as the ‘scale of the
turbulence,m a characteristic of turbulence of equal 5mpor-
tance with the other characteristlos; namely, the amplitudes
and frequencies of’ the fluctuatlone, Modern physical experi-
ments, such as are conducted in aerodynamlce, permit measuring
the assooiatlon moments and thus check the results of the
theory. From the Fractioal point of view new theories are
important beoause they replace eemiemplrlcal theories, they
throw light on the physical structure of turbulent motibn,
and also becau6e they provide a firm basis for the inveetlga-
tlon of artificial flows In”aerodynamic wind tunnels;.open
channels, and so forth. A knowledge of the tur3ulenee”oharac-
teristlce of these flows permits a more accurate estlmste of
t“he soale effeots of the phenomena and better application of
the model,teetw to full-soale design. ,...

f . . ., ..”#
, A furthed development of the-problem ot the diffusion of
artificially produced turbulence behind screens or other tur_
bulenceproducing devices is presented In this paper. With
the fundamental assumptions of the theory m-ore accurately de
fined a method 1s proposed that permits the Iavetatigation of
the diffusion of turbulent dioturbancea of fin~te scale in
p+ac? of the point source diaturbancee considered by Von
Karman ~ The method IS baaed on the authorts concept of ‘mo-
ment of”dieturbancew an a certain theoretically- well-founded
~eaeure ef ‘tuhbulent diaturbancea, Inaideritally;’ with-the
object of Sadlliariking the reader-with the fundamentals qf
the new theory, the latter isrpresented in”a form”.%hat is con-
sidered slmpl.er than that giren In existing l~t.bf~tuio.,, . -,. ..

1. HOMOGENEOUS AND ISOTROP16’TURBULENCE - ASS6CIATIOM

MOMENTS AND” CO@ATIOi/TEFSOi - TWO,F@ST;COiRIBLATIOII

PT.JECTIOl?S*OR NOHEHTS OF THE SE~OkD’@DER’:, ,
,.

*

Visualitie a homogene&ua turbulent flow, that lo. a flow
at a given inotant the average chkrabthrietlce of which are
the mame at different- pol?te, .~ahe an~.t~o p?ints In the flow .
M and Ml a~”~.hen.ote their relatlve radius vector Xii by ~
and its projbcti.ons on. the coordina,tp’axee by tlo cat t30
The flow ve30cltiea at ,points M &nd MF’ at the same instant



T
. ,.. ... —-

NACA TM I?cl: 1.079 3

of time ‘“t are denoted. b~ x...and x1 .-Dand’ thqlr pr.oJe*..—
tlonw oh ‘the axes’ “by. v1,- and “ vll;--..~ha-.a~erag=+ magnitudes:

Y.-.-..

.,.,. ..-
——=1

. . . r “.*iJ a .+),.. .... . . . .. ..
.“-“

are called. following Priedmann and

. . . .,.. .
.. . .“ . . (1,1)

.. .:.

Ke:lli3r, Mataeociatio&
moments of-the secon~ order. m .These ~ine magnitudes con-

. stituto a.tensor of “the second rank called the tensor
of the association moment. With re.gark.%o ‘+he averaging
khe” usual atreraglng with reepect to :time of:%he turbulence
theory ie assumed,. Use is also made of the gtiqq~ly .assuinod
averaging quantitlet3;

..

—

(4) 6* = a
.. -.* ‘., 1. :.

Eq’u:tions (3) and (4) are applicable,, aa is known,’ for the
condition that the avarago functions may be considered as
constant (or slightly. varying) funct:o,ns in the averaging
Icterval. * : I.. .,. .

The teneor .@...in the general case of a homogeneous
flow ?lopends only on thtilrela~iye. positl’on of the points M
and Mt, that is, on the vector = and on the time. A par-
ticular cnse ie where the association moment teneor ie a
function !af the time an.d:of.the d~e.tance.....r h@w.e.en the .
points. M, and ~1 but not of their relati.~m.aposition In
space. The turbulent flow In which the aeeocla$lon moment
tensor at n given- instan% does not depend on the”dlrec$itin
in epace of the line connecting the two points,” but only on
the distance between them, is called an,~~tmc.migmtur~ulent
flow, “Ih~‘alxould.’be paktlcular~$ nd~g.~ tlidt t-lie“~r6p6rty of

“- isotropy rofere to the te’nsor as a whole as a physical magni-
tude and not to Lts individual components, :w&tch depend on

. the” re:ativo poslt~on of; the 13ws’ MMI ~ add the ~tjor,dinate
● .. .“.

exese

The general gOEIIF:Qf the””aeeoctiti~ .mo”nent te.n”atir’~in a
homogeneous, isotropic flow is eetablishod by means of the
synthetic (physical) definition of the tensor- By the”
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I .,
..”definition of Isotropy the components of the tensor @
in the Bysten of ooordititets Mlnb, - associated with the

point M! (axis Ml ie.directed along .fi~l, the axes Mn
and’ Mb perpendicular to It), do not depend on the direc-
tion of these axes in space but only on the time and the
dietRnc~ r between the points M. .apd .MI. Theee comp-
nente are denoted by:

I

(1) The aseociatlon moment between the longitudinal
components” of the velocity aloqg”the vector ~K~ (with unit

.
vector L= ;) by

I’(r, t) = lf,vLf (1,2)

(2) The a~80cl~tion moment between the velocity
component8 traneverme to MM? by

..

G (r, t)== ‘ = ‘bvbt (1,3) “

(3) The association moments between one longitudinal .
and me t,ransverbb. velocity “component .by

..- . .
—..,.:

s~ (r, t) = vnv~f.= vbv~f
,

I

These teneo~definlng magnitudes may. be
pressed in.terms.of the Carteeian compdneuts-——

I

—— -- ---—---—
1’ (rIt)= Vlvlf=(v 1) (~~~) = ‘.=. . --- .. . .

S (r,t)-=” O’. 1 n
.ij i j’

ISl ‘(”r,“t).= Q n 1
iJijn.

.. ‘,.

readily ex-
of the ttinsor
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where v .~_-denotee -the ecalar produ!t ; ti,-. .=-.. ..—-.-....—..----- - ‘d ‘*re ‘he
projections of ‘-the unit veators L and ~, that is, the
direction cosines of the vector MM t and any arbitrary
v?ctor perpendicular to ite The summation sign is omitted
“for repeated indices. ““

By the defin$t,ion of isotropy the momente ~,.G, S, and
s= should rrot depend on the direction of MM f and the axes
perpendioutar to it, that” is, on the ma&n5tudes Ii and n~.

Ths”deperrd.etice of the tensur” ~ on the unit ‘vector ~ and
the scalars r and t should be of the general form

...
.,

@ = ~ (.r,t) at + B (r, t) I (1,5)
.— .:.”. .“ “. .

..
where ~ (r,t) end B (r,t) are as yet undetermined functions,
~ is the symbol for the dyad constructed from the veotor 1 .
and
.,.,

I is the-unit tenOorC.- Analytically the result 1s: ‘-
.. .. ..

f’l#J
%J = A (rrt) IIIJ+ B (rtt) IiJ9 IIJ = (1,5?)
.. .: ...“. . - lil=,j.,... . .

Hence, substituting from (l,F~) In (1,4) whil,e making use of
,t~e known prdp-e’rtle~ ‘of,direction.’coslnea ‘givei:..

*. ....

G (r,t)=A (r,t~ \i~JnlnJ+B (r.,t) Ii~ninJ ~ B
—. . “.. .

,:$ (r,t) = A (r,t) litJtinJ+ B (r,t) IiJlinJ = OR-

S1 (r,t) = A (r,.t) ~111 ql~j-+:B.(rHlt) IIjm~J = 0
.4;;

The squating to zero of the compo?.ent.s ,vcavn~,
.——

?= and
,:rq ,.. . ::.

~the’r~.’nond.lag.~’filcomponents .showe. that the: @xes ~lnb. ar~
the ~r,i~clpsl. ax~eq of the tensor ~$~ -.,Coq.eeq’uently..* 9

‘..
. . . . ----

.:,. . . . . . . . . . . . . . . . . . .. .. . . .,
.-.+ &.

. .

..b.
. . .?... , . ,. . . -., . . . . . ~.. : .:.. r.,.

. . . .fi . . .. . . . . . ::
. :.. ,:: 1 ‘.

It ——- — -. -—
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and the final expreeeion for the ten$or qJ will be

.“
@=(r- G)~+GI

o~j = (r - G) IIIJ + GIIJ
}:

. (l,F.)

In what follows the functions F(r,t) and G (r,t) are
denoted as the first and oecond moment functions *——-- 9

Meting.that in the case of homogeneous isotropic turbu-
lence

Von K~rm&, in place of the association moment tensor 0,
introduces the correlation tensor

.. .
.,...~ .,

:.
R=*Q,

Vd
‘i’ =%’ = ‘:”

(1,7)

Together with Von Ka’rm&n the two correlation functions are
Introduced:

f (r, t) =~ g (r, t)=~ (1,8)— —
Va Va

80 that,’ rnakin~ .US.CZ“of the evi’d’entre~atlun Ii = t~/r”

.-

or

.
Incidentally it should be noted that yq = O for

i’# J. a~ r approaches zer”o in the expressions for s or
s19 This id not durpri~ing since the av”erage velocities

~The reader is reminded that these functions have a simple
physical m~anihg: namely, the ae~ociation moments between two
longitudinal or two tran8verBe velocity components with reepect
to the line oonnectlng the points.
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in a hQKloEeneouQ turbulence are everywhere..the same ”and-there
is--n~.mSm~Ktum” tYans~Ort O The friction is.then”also evidently
equal~to.aerom .

. 1 :,.. .. ..m... . .“ 1
.,

.’
!l?heumknowri obrrelat~on functloq?: f and g are defined

by a“relation based on thb equation of oon~inu$tyo

.2. +3SOCIATIOI9 MOMEMTS Or T~E~HIRD O~DER:-. ASSf)CIATIOlV
... .,. . .,. . .’

MOMEMT TEHSOR OF THE THIRD ;ANK AiD ITS MOMiMT &kcTIOHS-

. . . .. VCORRELATIOd TEMSOR AMD ITS 00RREcTIOH”YUNCTXONS’. :
.

In the Frledmann and Keller theory the association m-
ment$ of ’th&:thi;&-iord@r were-not coneiderod~ It waB aefiumed
that these moments were small and that they could be neglected,
Von K&rm&n at first neglected them and only after the orlt~eiem
of Taylor did he give up this simplification, Since the in-
vestigation of the problem of isotropic turbulent motion ie to
be made with a minimum of quantitative reetrlctlng assumptions
the theory of aeaociation momente ofmthe thlr~ order Ie pret “
tented.by the same method of presentation as in the previous
section.’

;1,”’:
.

By .aeeoclatlon momente of the third or~er or simply
third moments are meant average rnagn~tudes;.of the type:

-:..”.. ..... “. : .

‘ivJvk c and Iv !
‘ivj k

-. .I . . . . . ,,. ”,.-. . : . “ . . . . . . .
.“.. .. .

where the noiation rtirnairiethe came. ..
, ;.... . ..,.....

.. . . . .... . .....
It SE $etidl.ly seen’;that the aseoclati.on rnoti~~.t~ai!itq~n-

Ing two components :a~’point Ml and ond.ht point M may be
expreesed in terme of the aeeoclation moments containing two
aomponente at point M and one qt point M?- Interchanging
the .place,ti.’ofthq.”polnta . M and M? .Ie equivalent to re-
versing the direction of the vector ~ eo that

.

;.Z.. -..
. — .-J .-

‘Ivj’vk’ = - ‘i:VJvk pnd ~o for;h
.. ....... !1’ :...’”., . ..

. . .%. :

ThereY’okei con8ide> the. mag.n’ithde”eof the type
#

vivJvk:..

The eet of theee magn.lt~d~es,fo~mo an a~Eociation frnome.qt,tecn~or
.

.+!. . : ..
...... I..;’.:.!.



. ef the third rank. Denotilng this teneoi by ~ “and its “ “
. . components hy ~ijk gives Ita moment. func$ioni”by consid-

ering, ae previously, the eynthetlc (phyalcai)-definition
, of the tensor, For this purpose consider the .componenta “
of the” tenaor ~ on the axea whloh are the principal axea
of the tensor ~:

—— —— .— ——
.

‘1 %1 f, Vlvnvlf, ‘vvlvnvni, Vn ~~, vnavn~ and ao ‘forth

Aa in the previous caae it ia noted that (repeated aubaoripta
denote summation):

‘a = qlia Vn = vin~n Vir=Vilti and
..

1.:

,~.i.

lience
..

——,

‘Ivnvn 1 = %jklinJnk md. ao forth

ao for%h””,.

.,

(2,1)
. ..

According to the condition of isotropy all these third
moments should not depend on the dlreotlon c~ainea” .i~
n.
d

“and
The equation of the general dependence of the tensor

Q the third rank. .11. on the vector J (invariant equal to
unity) and”the scalars x awd & reads:

. .

where A, B, C, and D ar~ scalar functlona of r and t.
.- . ..

To determine theae~alar functlona the valuea
%Jk

from (2,2) are aubatituted in (2,1) so that.,.for example: .
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or, by making use of the kno,wn propert lee of the direction

. ~.9.0.6jlnea:..__-.-”:j:f--”:“.: ‘ - . ~. . . , .,
,. ....- .. .

. . . . . . .
- .“:-..““

l~li = 1, lJkZJ1k = lJ~J = 1, and, so forth

,

-

ayI=A+B+C+D‘t a .

., .. , ., .
,

,“ ,.

‘“t% ‘a=e~rn~iar mamner “ “ ‘
n .- ..’.. : #. .

....
.— .—
V,vnvlf = o, vvv f u B=VV v f = c

Inn
. f:.. .. n .

nl:n.
. .:, .“

——.
‘vt=D,

‘n .1 ‘n %=t = 0,
-v12vn1 = O eta.

.. I I

the three nonzero moment functions are denoted thus:

a —— ——.
.y~.v~~...K.K(.r,t);v vv 1 + vv v ~ = Q(r,.t):

.Inri... I%b

.

(2,3)

:? --..” . ..-
..-

l’or the coefficients A, B, C, and B it results In:

.*.,., ~-: -’... .‘.’‘ :,% .-..,.. .,/:..:::,...... ;<:
....~.. ...”..”” :“” .,%,,:: :~. .. .A-=” k -’E?Q- H .. ‘:”ii’!”..~;;:y~; .
....“ ;... 1 .:$:r... : .- ., I,. . .’. ..:. ‘i ,.......
.~),..., ...., ‘I-7. . :..i.- ,.’;:.~= ~;% Q. ? 1. ”..-. -., .”..1.f “

f:.
.. .

,... ,. 9 : ff..: . .“:.. 1 R, .. /. . ~ ;;.... .. . . .- -. ‘. “.s. :..’. ... ...

. . .. :,,.,. .el
L;-”53-= H. :.. .7 .,;:.-.f-+... . -. Jy’.” ---z

.....” ,, ,. “..-!;”.,:.,
Th< ~In.al .ex~’~:arn~.op~.~.pr~the comp”onbnta? ifi t~~:”i”e~o”cih$ibn
moment tensor o#’..:t.hei.tbd=d rank Is : ..-.-..:.. .:.JJ.L1

. .. ..
:.. :

In place of $he tienaor of association moments of the
third order Von Karm& uses the correlation tensor:
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If the correlation functions corresponding to the moment
functions are denoted by the corresponding Bmall -letters,
eetting

and Ii is replaced by ~i/r, the ion Kirmin formula reads:

4. VECTOR OB’ ASSOCIATION MOMENT RELATING PRESSURE AND

VELOCITY IE ISOTROPIC FLOW AND CORRESPONDING

MONENT YUHCTION - DERIVATION OF FUNDAMENTAL

RELATIONS BETWEEN MOMENT FUNCTIONS

The investigation of the problems of the dynamics of
an isotropic turbulent flow required still another association
moment relating the pressure p at B point M with the ve-
locity vector ~~ at a neighboring point, !!!hieassociation
momont Ie represented by the vector yj~ with the projectlone

\ ~, Followin$ the method of the preceding eection the

physical components of the vector of the aseoclation moment
relating the preseure with the longitudinal and transverse
velocities are expressed by the projections:

—.
-r - pv~fli: pvn = Pvini;

——-
~ = pvibi

(4;1)

L ---- . i
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on the condition that, beoauao of the iootropy, theee physl-
eal qagnitudem do not depend on 1~, n~, and b~ ● The con-

dition of the general Isotropic dependence of the weetor PZ
on the unit veotor ~ and the soalare r and t So evident-
17 reduoed to the following: . .

0 .,
●

.. .

(4,2)~ E P (:rtt) IIPy~

where P(r,t) io an arbitrary “ooalar funotion of the warl-
blee r,t. The phye~oal meantng of these functions will
beoome olear if the value ~ is subetltuted from (4,2) “
in (4,1); it 1s:

.

Hence the moment function P(r,t) represents the association
moment relating the pressure at point M with the longitudi-
nal velocity component at point M+; the aseoclatlon moment
of the preseure with the transvers~ velocity component Is
equal to zero. Elsewhere it is shown that P(r,t) must aleo
be equal t“p.zero by reason of the aOntlnuitY. 9qua.tion. . .. .

The foregoing stnte~nt rogar$$ng the association moment
of the preseure and velocity naturally remains true for the
aesoalation moments of any scalar fuuztian and the velooltiesm
!Chls remark’wil.l be of use in .tho.following Information.. ~

. ., ..
Simple transformations: on thq continuity “equation;” ‘

whioh, of oourse,holds for the” turbulent flow, enatilee eer-
taln relations between the moment functions of the aaeoaia-
tlon moments to he .fuund: ~ “ . : .

P(r,t); IP(r,t); (l(r,t)~ K(r, t); Q(r, t)i H(r, t)
. . . .. :.

Proceeding from the almplest and keeping the point M
fixed, write the equatloq of eontlmulty In the neighborhood
of the point Ho (repeated Indlees denote summation)

r
--—m - I
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o

.Ua

po

(4,4)

,:
oBauro
kc tho

.

Hult iply
p , which
average;

tion
int

ty
M,

t ho
and

both sides of the a
floes not dopcad on
this yielde

hove oq
g Rt

pr
tn

o (4,5)

(4 .,2)

pv.JI = ?(r, t)lj = P(r, t)

But ,

ij
--
r lT (r

The,rofore, (4 ,4) b? wrlttrn thu~:
..

.

. .

3Tr+:rn I3Tr+ o3’n+

denotes difforontlati
this equation Is

with rospoct towhore
T.hc s

t
01

ho prime
,Ution of

on r.

m);
l-r=

r3
P

c(t)
—~
r

From the condition of finiteness of

c(t) = o, P

.,

P

(r

f

St)

or

=0

r--+ o foll”ovs

. . .

TII
at
Rt

.us In
ion m
snot

n
,Omo
hour

honogenoo
nt of tho
is Oqllal

us “
pr
to

Isotro?i
essure a
zero, t

c
t
hn

turbulent flow
one point with
,t 1s,

t ho
the

assocl-
velocity

-—
pval

——
pvn f o

or .,..,
= o

. .

.
:.“..
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Mult Iplyi-ng b-oth sides ,Qf equation (4,4) by vi ,
iridoycndent of tl, and avcrnglng givo~

The substitution of tho cxpressione for tho components
tho tensor in terms of tho mouont functions ~ and G
(1,6) first replacing al by !i/r glvos.

13

(4,6)

of
by

or

N’otlng that (prime denotee $artial difforentiatlon with
respect to r):

. .

leavee after simple reductions:

f.. .”

This is the relatisn between th% moment functions. .F and
G. With the aid of this rel~tion G Is re~lacbd by F “
according to the equntion:

. .

. .

(4,8)

F’
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Next, consider the moments of the thtrd order . In
same manner as before , multiplyin~ both “sides of e~uati

1079

the
on

(4,4) , whers the index of summation j is renlace~ b:? k.
by VIVJ and av~raging the results in:

.

avvvl
ALA . ()

a~k .

Substitution In the” above equation of the vaiues of the
coxnonor.t6 of. %jk by (2,4) gives:

.“

:

tk
7’-

\fk, = o (4,10)

—— . ..,, .-, , --- ■ —m-ml Ilm Im 111 HI I
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Henctq equation (4, 10.).glve.s . ... -. -----.—.# .. ..... .. . . :

15

. .
,

[-

s K-2 Q-H

. .. .. . . ra ‘. r k::- ‘)’+: e)’]‘igj
: . . . . . . . .. !. .

[

I

01
+ .2:+ 3#.+r s:*: T UJ=O... :“.

.

In view of the fact that this equation mu-t be satisfied

~~~a~~~ ~~i;e~~~ ‘expressions in braokete are individuall~
henoe after simple reductions, the two

equations corms.ot,ing the moment functionri K, Q,. and H
read ae ,followea ‘ ‘, ,

KI-H!+ 2K-2H-6Q = o

r

}

:...

(4,11)

H,+2Q+2H= o

r

The last equation expresses Q In terms of H: .. .:..
,. . .

Q H=+f=- ‘. @,12)

..:,...

‘Subs~ltution of this value of oQ in the first equat”l~<~(~,ll)
gives,: . ,, . .1..!. . .. .,...”. . .

.....“
(K+2H)I + $ (k +. 2H)” =..0 ‘ . .

, ... .. .. .. .. . .
. ..”” !hence .:’.-. . . ‘...: , . : ... . . . :.

. . .. .,.”, . .1

K+2H= m.’ ~~ ‘:.””::
... ra

:., ., 1

I’rom the condition of fln~tenese of the sum K+ 2H for
r-o. follows:

.1...‘ “ I ““ [1 -. . .. ,.. . .*.....,... 1... K +:”~H =’0 “,.. :- (4,13).,.. ,, ..
. . . . .,”....:../, :“.’.”

,L. ..

It Is readily eeen ihat’ equat~on ~4.,.&\ 1s’ ciktinfled beoause
of the previoutaly proved general property of ieotropio flow;
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namely, that the aaeociation moments of the scalars at one
“point with the velocity components at anothor are equal to

zero, Thus :
. .

—— —— ——

This equation may be considered as equivalent to

pv= .

Tx’ * 0 i
(4,14)

.,

where pva/2 is the kinetic energy at pol~t M, and v! thb
velocity at point M’ , Bearing in mind the stateme=t con-
cerning the association moment of the “pkessure and velocity~
write:

—

(P+$k=0 (4,15)’

.

!l!hus in a homogeneous isotropic turbulent flow there is no
correlation between the velocity at one point and the total
mechanical energy at anot:her.

The same holds true for magnitudes maasured at the Bame
~dint in the limit as r- O- According to the forego.iag the
isotropy of a turbulent flow Is intimately related with the
absence of momentum transport (friction). Now It Is found
thot in an isotroplcm flow there. can””.bc!no transport of energy.

It should be %orne in mind that tho obtained results are
not a trivial consequence of the Purely kinematic symmetry of
isotropic flow (thi~ is true, for-example,
equations:

and so forth,whlch might hnve been derived

with reg&d to-tho

..

by rotating n
through 1!30°). They-were Droved..by the equation of continuity
of the flow (the equations —7=0

-——
Pv ~ and vavl ~ = O cannot

be derived from considerations of symmetry). This equation is
applicah,le. onl~ to incqrnpressible fluid,.. \

:
; -,
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6. FUNDAMENTAL 31QUATI ON 03’TH3 PROPAGATION or TUEBUIJI~CE
.-

.IN AN ISOTROPIC, FLOW - DISTURBANCE MOMENT -.TH~ORZM ON TrHE

CO~SIJRVATIOH OF THE DISTURBANCE MOMBIJT - A3~LOGY- BETWEEN

THE PROPAGATION 03’ TURBIJ~MT DISTURBANCES AND

THE PROPAGATION OE’ HEAT
.

The next step is the derivation of the fundamental dif-
ferential equation of the propaga,tio> of turbulent disturb-
ances as recently given by Von lLarm.an(1938), With a view
to further investige.tlog this equation is derived i,n t,erms of
moment functions and not the correlations by Von Karmanm

The continuity equation, as a homogeneous equetion with
respect to the velocities, affords expressions of the moment
functions only in terms. of others of the same order. A re-
lation between the moment functions of different orders is
obtained by the Navlc&Stokes equations, which are vrltten
down for the point M.

. . .

Mu~tlplying both:~id~s by Ykt, that is, by the{velocity
at””po4nt “Ml, and averaging gives *.

m.

~he. componep.t ~.~ is a function”of the time and the coordi-
nates” .lii - and not of xl; then by use of,th: equatgoa of.
continuity ..the.~riple product on the left side can’be w~itten
as : :.. .. . .. -.

...
avi,! -aviv~. ?)Vj ?W~VjVkt

V’k? Vj”q = v~~.-— vkltvi—
atif: axi e ax~

‘The association moment v~vjvkf :-.may “be coneiderodcas a

function of xJ if the point Ml is held fixed or as n

-.
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function of .tJ if the Point M is held fix”ds diffe~ent~-
ation with respect to xj corresponding to fixing the point
Ml and differentiation with respect to !!

1
to fixing the

point M, that is, to a revereal In the d rection of differ-
entiation; hence

eo that
——.

avi a .—

‘k’ ‘J ~ =
_ — V~vjv#

Ud
“(5,2)

..

From the foregoing further follows:

(5,3)

and

-— ——
VIE’ Vxaq = Vxavivkf =Va ViV~l (5,4)

where the symbol Va denote~ the La~>lacian with respect to
the variable . ~ (the sign before the Leplacian evidently
should not var~). After the above transformations equation
(!?,1) becoties

?lvi . b ‘— ---—
—-

‘kt at q
vivJ~kl = VVR Vivk t (5,5)

The safie process is repeated by Interchanging the points M
and ~1: that 1s,’ write down the. equation of Navier-Stokes
at the point Ml , multiply both sides by vi 9 and so forth,
so that instead of equ’tion (5,s) there is:

(5,6)

But as already noted in seotion 2:
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..
.-:.. *...\-,. .----- .....,.. . .. .---- , “’‘“FTy m=.”y~ ’.-..” “’;~’

%. id. A J-k
.....--------

.~..: .- . . ..-.,

,i19

. . ... .
.. . . .

Com&n~~~ (6.6) and (5 ,7) and

.?.} ,. ...
&

.+ ’’.1-,:..
...-{.. :.:LJ..:

., :..*---::.: .-”; [~.:
.

a.— . h.fl.:...I”
-Vvvv’ i.64’+)

*.k .~li.- ,: ....:
i, . .: .. ,1 “, “,.”’::.:. -... . .:

..,.~;.7.-- .,. +. . .:7:“.
....: “:’ ..” ~..

.recal llng the previously
assumed notation for the “cornponente..of the tens ore of the: ‘V
association nomente finally givess ..

,

.-

The foregoing .oompl~cated eyetem of’ equatioke can be very
much simplified by expre~sing all the oomponente of the.
tensore in terme of the corresponding moment funot.ions. ....
Making use of. the condition t.h~t,:”thaequation must h.ol.d..$b.r

..:any valuee of , 41 ae before .afforde, .howewer, two.aquationa

-i&:%ththree unknown In.depen”den’t”mo-m.eht.f-unctions (fo.% ekem~~e.
““T:,-G; anil H). Elimlnat’ing one of theee. (for examp>e.;’ti ),.
‘ii,$~~ #b”me,reductions-w.h,ic% are disregarded, glveu ihe .fol-
%owYh&:equation:

:,. ,..: . . .:. -::-
.;.j~}~f~~-~ . , ,,. . . . .

., ‘
-,...::.. . . . . . .

---- .-
.~~~~& $oregoin~ the derivat’ivem OZ ,~. am.~, ~$~:~w~~&”~. .

reep.ect to ~r. were denoted by,~a.prime., the: t ime being aon-
“=’1derb~”‘hs’.~:flx’e’dthr.on.ghO’Ut●. H:er.e thb par% ihl defil’vk~l’~~o
no tat ion ie used in order to p~ipg. out the chy?ct.er..@d?.th#
time as an independent v6tri8ble.

.. ~.~fi,~ : ... ;.. -1::
—

,.. . . . . . . ...: r..

..-
4 ,’. . . . -.:

. . . . .. . , * ... ..rr.. . .. .:.. . . ......... -! .,. . . . ..”.
~ . .. ...?’ ..:”..

.
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The form (5,9) proposed here 1s more suitable for~’~plicetlon
a~ will be shown later sinc!e it doee not contain the ,ar$ifi-
cially introduced faotor :am The equation by Von Karman
represents a single equation with two unknown functions h
and f, that i,s, ,an indeterminate equation. As has been
shown by Ton Karman, ln his most reoent paper, it is Impossible
to render the equation determinate by using the same method
but passing to momente of a higher order because the number
of the moment or correlation functions increas.?cs together
with the number of new equations (this fact has long b.ee-,n4
known due to the investigations by ~riedmann as far. iback :a.s
1925).

.,. Equation (5,9) may be. ooneid.ered as.an equation deter--
mfning the d~strlbution in epaae arid”time of the association
moment F(r,t) or, what is equlvaIent, of a magnitude pre
portlonal to it; namely, the coefficient of correlation
between two lotigitudlnal .velooities .atctw.o neighboring points
at a dietanoe r from each other at the same instant of time-
The first .term determines the.local change af F, and the
iarnalntdg.terms .ori’the left;eide give the convective change

.’i”n~ .I’ expresse~ .in “terms af.’the function H, and finally the
.~qi.ght side gives ,tb~ ~molgc,ula

i
dlffu~lqn ?f the same magnitude

1’., The iradptqrmiri~tqqqse of ,~e 6quat16p la due to the pres-
.enqe of the.convecilve terrns,,Vhlc.h”..r&rnain~@kn6wn and caq$dt
be expressed In’*erms of the function F. ‘w~thout any kdtif~
tional aesumptionso Equation (F,9) might have been direo%~y
arrived at by averaging the llavle-Stokes equationa In epheri-

rca$ coord~uhtee, ~nd...itwould then be.alear that the local and
‘dlf~usion,t~~ms $epr6~ent talmult’hneoysly-:an.averaging of the
fluctuations ‘Ivl ‘ and a f~uctuation. of the average TV
whilo the convective term! on aocount of nonlinearity, deter-
mities.th’e,msa?ic6nv”ection. of ‘the magnitude: .vavt~ but not the.. . .. ..1. *
aoa.~e.ct.i~n.qf:nfihe ~qan.~ V{.v’t’ = ~; and:p~b.oisely herein lies

The .Von K&rm&n theory in 1937 in whloh the effect of
“ moments of. thb th”~rd:o.r~b~ .:tias“omlt4ed, that let the con-
vectlv’e (’ine~t~a): tekms, max .be .rega-rde&.only as a theofif——.-
pure diffusion without convection, that ie, a motion with
very small Reynolds numbers. Attempts to consider the problem
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Of “turbulent I-sotrople. motlqn for :large lte~naldo mzmbere in
. . Von K&rm&rls recent ‘“piiper “(“1908) n“rd as yet in a very primi-

tive “8thge;~ I.n this qoqneation it le. of great u~exeet to
.qlqrify the general p%oper.tiea,qf i.sotropie tuzbu,lent .flov
in the general dame of motion with both small and large
.Reyno3ds numbere. “ . “. ..1. .

Subsequently proof is given of a general the.oq.em of
,~urbu$ent dlsturbaneas: namely, a theorem on the aonserv~

‘“*“&w. of the ditaturbanoe moment? With the aid of this theorem
.tha_&oblem of the decay of turbulent disturbances” oan be eet-..

. . .

6. T.@’oREK OM TH3 C03SE~VATIOH OF T’*:”DISTURBAHCX MOHZIW-

.,.”
~ISTURBAl?CE MOMENT AS A 41EAS.iRE ,CiT~ QUANTITY OF.

,.
* . PROPAGATION PROBtiM’S ””-’-

Before prooqeding ,to the derivation of the fundamental
theorem a few remarkm concerning” the phyaiaal signi~icanee of
the problem of obtaining the funotion I?(rot) or f(r,t) =

~ F (r,t) should be of intereet- Aseume that the function
-s
v

. ~(~rJ) $8 det~rmined;then the correlation coefficient—-
‘f~r;t) = vlv ~/v~

i
%etween the longitud~inal” velocities will

be determine . For r=o the correlation coeffiolent la
evidently equal to unity and a comple$e, .relati?n b.e~wpen the
phenomena exists. With Increasing r, howeWe*, ‘the corr+
lation aoeffioient rapidly deoreasea corresponding to a
d&oYea8q of th.ecakatietical aeeoc.iamtion b~t~e.en”.the ph.onomena
at the ~oint-e k! and M~o ?or . PEosr and “f“ are ebidentl~
equal to- =ero,

. ..

c Cmn~i@~r.-*the..integral . - . .. ~ ~“~, . ,

‘t; “ @ , w .,.
:.

_Lm
J

f(r,~t)dr = ~
J

F (r,t) drJ. ‘(6,1)
.! ●.. .. !.:+,. 0’ i“;

v- o
,; .. 7

. .

This in~egra~:~ay be visualized as a oertain length, derived
with the aid of the eorrelationm~.Qeffieient, that oharaote~ \

(.i8ea the mean dimension of tho ~e~oa. of’ dleturbance or, as
. .

—
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termed later on, the eoaie of the turbulence. ~l~he ma$nstude

J7’=m’ –1s denoted as the Int”en”sity of the turbulence

(It is the square root of the mean square of the veloaity).

If, at a given instant, disturbances” are produced in a
stationary fluid (by pae~ing a screen through It), then under “
the effect of viscosity and eonveot:on these dieturbaneee
will be propagated in spaae and dissipated on account of”the
vfaaosit~m It can readily be.eeen that the intensity wI1l
decrease to zero and the scale of turbulence.w~ll expand aa a
result of the diffusion and convection, The question naturally
ariaea whether or not a oertain quantity will be conserved
with respect to time. It will be shown that under ver~ gen-
eral assumptions such a magnitude that remaina ~onstant in.—
time exists and may serve aa a measure of the quantity of—..——
disturbance externally applied to the fluid.

——
To rove this— ——

both aldea of equation (5,9) are multiplied by rz where k
for the preaerik is assumed to be positive and integrated with
respect to r between the. llmits of 8ero and Infinity. Then

. .
,. ...

.:
.,.

(6,2)

Integrating (f~rmally) by parta gives . “

m “m w.

{.,”””
..

.m . .
k: x

=: 2 (Hrk)o + [2k=.8)~ E~
‘r+ 2“(: ~~ ~~

:....\.; .$.:.;.....,.. **....
-.:“ ,,:.

‘&,rL3.dr

J
2V (k-4)i”

. . .
.... , - (6;;)

o
ar
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Aa r Increases to inflnlty the ftzaat~.ons P, H, afi b
... .‘whi~h are proportional--te the. sorre>a&S~n eoeffioiente, must

rapidly deorease to zero, I’or smal~ ~Fs the function B’,
being an even funotion, has the form

*~ ; ‘“ “-o L ~it “rdL’ %>~$~ j-~

an% therefore, for small..:r: ,.#,. ... ‘.f:~.:‘..:.“’”.
... :.. . :..... .,.. .. . .. . ,.“. .“ “ ...Lt.

., . %= r ‘.;’ :“’ .’..,...
. . I -.,..,..

:.i. . .
ar ..;,:s”~.,‘ .

“...*
J~ . r.. ~....J

.●.

..J.’. “:.. .: ..:

$8$l~e@.?: the fu~btion
.;.....

H(r,t) is ex~@@d in a serlee~
*L’ . : .. . .

. .,. I . .

A lplqo,t)r~ +...H(r, t) =H(O,t)~H}(O,$) r+; .,Hfl(O,t)ra+ ~
,,.. y, . ,.!::.:..,. . ‘t“. “. .. .

l, ~,.’*:..:.: . . . . ..- .- . “ ‘ - ‘%“
.. . Il.... .. . . . . .l:” .1 .

. .

I; Is no~ed.that, on account of the-:4scttropy, ~on.rbverslng *he
direotion,~gtt J to ~l. and pass~ng l?o~t$heltmit ae r.*OO

.-

I –.. -



. (6,4)

in other words for all values of t

o 0-

The magnitude X which rehains aon RtBnt“ti jA!iUlnot-
withstanding the diffneion of the dlaturbance ia termed
“dlsturbanc!e momentn and serves am a.meaeure for the turbu-
lent dlsturbanoe. In the “came.Way aa In the phenomenon of
heat diffusion where the total quantity of heat initially
imparted to the fluid remalne the same, the integral (6,5)
reprpgenta a oertaln meanur!$ of the qucqntlty of disturbs.nae
which remains the same notwithstanding the dissipation of
the intensity of the turbulence in the flow.

! . . . . .
*,. It $s emphaslse~ that formula (6,5) W’BOderived for the
ease of homogeneous, Ieotropio turbulence from equation (6,9) -
in its general form without reJeotlng the oonveotive term,
that 1s, from.the indeterminate equation. Probably in the”
oaee of nonhomogeneous and nonicbtropie turbulence there “
exiots an analogy~ am.yet unknowns oorrespondlng to formula
(6,5].

Therefore,”tho ~ollowlng general theorem.- ~#distsarb-

~orn- $ ~ ~hornoganeoue. Isotro m- twbulent flo~-
and la determined & the initial disturbance— . —.—

~mpar
——

ted ~ ~ ~luid, In what follows, this theorem is
termed ‘the ~tim~ ~~,~
momentcu

. .,.

‘ The..forp~oln~i equation of the conservation of the dtq-
~urbcm~e mom@ may he readily interpreted ae follows: con-
sider, togethbi ui~h th& earlier introduced soale of turb-
lencie L determined by the integral (6,1), another oonven-
tto.na~eoale Lo given by..t~e:equatlon;

.

m
. . . . . . :: a ,.; b :.,

. ..! ...!

. . . .

f

.L*:”..-“,“f(r,t)r4dr
, .,

.,+.. . . .
, (6,!3)

.-. ...” ..,”” . . . .

w~ere L* like L lo % certain etatisttoall$ derived length

oharacterising the soale of the turbulenoe~ The Lntroduotion
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_- Of..this facq?.a. woul~..bq -very C.o-nyqnlent Sc\nce from equ.a~,~on
(6,5) ~here- quid then Immediately foll”oti: “ ,. .

.i.

,. .“.. . .. ..
J.. .’ “:”

?. L*B,. , :::.. . .. . = ,oonst8nti . . . (6,7)..

that “Is; - XIWilaAk Qls+ dh. l?Ws@x d*’”
turbulence & t%e fifth newer @ m-~ a.~ “
Illag.nitude, “a very clear and simple expression of’~thd bheorem
of ..thqao.n”aervatlotiof the disturbance .moment:’~ ““”:’ “m. . ;.,...~

It may be observed that the theore”m’of the”b”ona’erka’tion
of the disturbance moment serves as an In-tereating anaiog~
of the ‘known fact of the con”servatlon of” the total quantity
of heat during heat propagation in a fluids This eonslde~~
tlon ie eaaentlal for the eubeequent etudy and .Ie brtaf2y:; -
explalnede Recalling that the Laplacian, in an n-dlmentaional
@pace for a function depending only on the distance, ia dete>
mined by the formula: “.
..,. .. “.‘“-”.. .+p:.,’

1
-, .. . . . . . .

. . . ,
.J ,: r....:-

it ie readily eeen that equation (li,9) may “be”interpret”ed
as ~he eciuatlon of the nromagatiqn of h~at In a fluid iq
~-dlmen a.1~1~~~. tha momemt ?qz!ct~qn,, Y(r,t) be~ng
Interpreted as a ~~g~~~fi and the ‘ie?cond term on the left
representing ~he ~9n vecbive y~r~u o $bumwatixu
(Ite transport) expressed through the f~nctlon Ho With this
.fint-a.rp~ertation.the d.isturbanoe ‘mamonti.appeana.ue,athe?r ~thaa
thefjquant.ity.of heat in a flve~lmensio~al ep~”.~nd.tzhte .
quantity naturally remains coneiante The foregoing analogy
between the propagation of turbulent dleturban~ee in thre~
dimensional epace and the.propagation of heat In five-
dimeneional space will bo, of use later Ona “

TURBUm19CE Or A GIVEN INITIAL IMTEMSITY AliD SOALE
... . . .. ;“,.! ..

It hae been shown that the ”.fundamental equation by ?on
K&rm&n is an Indeterminate equation and for this reason the

.-
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‘-pibblbm iif ~he pr~pagatioh of turbulence st3l1:rem&lh&~qs-
sentially undetermi~ed. It Is possible, nevertheless,.fo
derive eeveral very Important conclusions from this equation,

. .
Von K&m&-and Howarth (reference 2) have eolved the

problem of the decay of the turbulence intensit~ behind
centers of.disturbance of only the point source type and
leave the problem far from completely ao$ved. Their : ‘..“
method still leaves the exponent in the law of the dec?ease
of” the turbulence Intensity undetermined, that 1s, only” the
character of the aoltit~on is given. “ Their computation pr~
cedure ia briefly deeorlbed,

In equation (5,10) r Ii equated to zero and since
$or small “values of r the furiction h 1s of the order of
~S (tie~ (6~4))equatlon L5,10) then becomes

.“ .“
*

-.. .

(7,1)

If, aooording to Taylor, the function g(r,t) is approxi-
mately replaced by the parabola

.. . ..,. ;%,
. .,

. . ,.
1“

gn(o,t)zh==l + ~“go@ “..:”:””(8(:%t”)”=8(or”t)+; “4 ..“. “. .
. .} 1 . . 8 . . . . . .

. . . . .

-. :,:..i
and-the a.b’acia~~” A found of the inte.rsectlon of this parabola
wltL.4:the axis ,r, : that Is,; A determined by the ‘formula. .

1. .
. . .. ‘., . ..
..? }’’:” “.”.

... -,... .

thl~.ma-gn~fiullxirnhy
Iatlo of the scale
equation: “ : “:A”:

...F. .. . ... ..
.“... . “....%

.’(?‘*v’: ‘ “.,
..-.,’..:”‘

... . ,..
.,,. . . .

..:%.~amLl_?_”... ... . . . .
gem.”:.: , .,. :... .

Tie”cdhsldbYe&-aa” ah””hfiioxihate” charaoter-
of turbulence atrlctly given by the. . ‘~. . ..l.... .,”.

mm. . . ...- ,

J
.: .,..

Lg = g(r,t)dr

Q . ..:
. .. , f: : ...
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Passing from the function g to the function f arid
-. ‘rqar#mberlng that by (4,7) .“ . “ ... .: ‘.-

.“

f- f

(7

fll+a ,-. = ftl+a
r(f~-gl)-f+g

.. r ‘. “: “ ..- c. . # . .

. “.,” . ....
sfn+a

*t+gi “~“f=”g : ~
—-—

r ra
“..-. . .1 ...

.
. . .

and for r=o
%:’”” . . ,

fow + a(fom _ ~om) _ (fow _ ~0’)=0

that ia,
.’

....,% .1 ..:....

..1.

.’
●

.. . .,
...” .. . “..

. :. .’ .’“.
,
results In ‘“”,B “..

. . 1-
(7,2)

. . .. la 1“=-A-”.. fon .
..;mk,.!

Bquatlon (7,1) takes the form,pf the well-known Taylor
equation: . . . .

(7,3)

.~ . . . .
●

where A or the magnitude fom associated with It remain
undetermined fuuctlota~ .of time-

,..’. t....
“.~~-.?Furthermore, retu~rifng f.b.dq~a~~”d.ii(F,1O), Von K&m&
resects the terms conta~ning~,~he) funetfon h and shows
that this corresponds to the case of small Reynolds nvmber

..-‘of.tire turbulent flow~(for” exsmple, number-”.~”.h~v)m
Eliminating -. from the~equation (F,lO]’.thtis simplified
with the aid of (7,1), Von Ka’rma”nobtalna the equation:
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(aaf +4df”
....*-c

==a?— )- Gf”oaf: .
at bra - —

(7,4)
r ?h

. . ,.. .

Seeking to obtain a particular Integral of this equation in

the form of a function of a single variable X = ~ V on...
. ...”. r Vt

K&min reduoes equation (7,4) to the form

fn + ( )4 + 2! f’t- 5fofif = o
34

..

..,.” . .

(7,5)

where the primes denote the derivatives with respect t~ X
and, therefore f a

t
IIB a aonetant which Von K&rm& “denoteti

by -a. This cone ant remaine an undetermined constant to
the end. The solution for f(%) ie given In the form:

I

where M represents the “kpown,hypergeometric functional. . .
,,

Equation (7,1) becomes

. . . . .. ,,
—

M ,a=.l;il (77,
dr a t s

‘= o

It is readily integrated and g~veg the result
%:,. ,.

.
... . .

.> .. ..
.,..!. . .,:

‘1” Lea

n (). . ~:~.~ to ,’ , “::;” ‘“ “ .( 7,8)
..a. o

.: . .1. ”.-’” . ... .
. .

‘~hit’ta’k~ and;W~~mkn, Course .1P modern analysla,. ..: I
. . .,,. ...... ,. . . ..

.— .. .. .. ... .
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wh~xe the “subdcmipt 0- d~qotea the Ialtiel vslqeo-.
‘dqiiation-(7”,2) “ ““- .-.

.

()l.=fi .Afn-— (o) =-~
Aa ““bra ~=o ~t x

...-.
..
.. 1

it also follows ihat

Thus for the particular solution of f(x) =
<)

whioh
-%’ .

corresponds to the analo~ of a heat source disturbance,
.t~e ~roblem remains uneolved since a is Unknoti: Vdn” ‘
Karman mentions the fact that the value a = 1/5 corresponds
to the Taylor theory,

The present au~or procoeded in a manner differing from
that of Von K&rm&!s and ~lved the problem, not only for
the #point sourcefl but @l&o for the ease of any initial dis-
turbancetl In place of the correlation func~ons

—.
f and—. —

h consider the prevlbusly Introduced aoment functknta E
and ~, that 1s, start not from equation (4,10) but. from
equation (5,9). . ..

Followlng Ton K~rma’n, the convective term Is reJected
and the equation
t

u.‘. .i” ( )2JJ+U .. ...= - ““,.. .. . . .
at. .

,47, 10)
r“ar “ . .. ... .. .-.4Z. ..“...-.. .. s... . .. ... - .

is solved corresponding to pure (molecular) diffus$ve di~
turbancess This. equation Is regarded as the equation of the

-E-ation of%eti% in”five-dimensional,. ~qmp .. /.

.Beginning with “%he.case of a source the particular
solution of equation (’7,10) in the ease of a source in fiwe-

. . . ---- . . . . ... . .. . . . .- . . . . . .. ---- ...

l.Eecently the a-ame problem of a source constituted the
. su5’Ject “.dfa &lksertatihn”’.for a’docitokls.de”&ke. by M;~~e
.~lldonshik.ov whosb mbthoil .dlffers from”t~e huttior-tta.”blathdl,
(Rep. of the Acad, of Sol, , 1939;)



I

.3.
dimensional space I* well khoih. I !Che soldtlon ie of ‘th~”-
form: . .

. ““a
“r”-.. e-a

F(r,t) = constant — (7,11)

(by !:..

-a constant
v (t) = r(o,.t)= —

(m8, .’

Substitu”t.~mi the value of To=(t) for any t = to / O and

and denot’ln”g it by %Oa the equation reads.

5 . . . . ... .. .

()~~ :’.,” “:”.
., J*=J+ to : . (7”,13)

..
..

Comparing this result with the Ton K&rn&n formula (7,8) ~t
is seen ‘that.the constant a Introduced by him as an upk.nown
has a completely defined value, namely, ‘

.,

1“au-
4

(7,14)

“ Tlnally the constant entering”-~quations (7,11) and (7,12) can
be strictly determined “~or this purpose the-
moment M Is found by the equation

,.
s m a av

M = r P(r. t)r4dr = constant r
~-*

disturbance

: (%AW,”’. m .J- ”-..,.
0.

..:

. . .

‘A. k’ebste:x.~:j~a~’t~~~.i)ifferential Equations of Mathemati-
cal. Phy’i3cq...:t,(k~e~eags $.s to Ruse Ian tranalat ion of booliy)
. .. ..- .

i. .. .

I
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The Integ?a.1 is re~ll?:,evaluated an,d-aft?r-.~mple re.dqctione-w ..-.., .-.., ..
} ., ... .,...:. ““ : .. .~ ,,.m.,:,- .,..-. . ,.:”.

%.. . . , . “94 ”””.’.” ;, ““ “
Oohiini = - .“”

40@hl. ., . . “
“..!. :.:”.~,~.. ..:..:. .

..:.~..: ,“.:.,: “ .“. .‘.
.-

whence t .:...... . ....‘,. ...“.

.- V...- . .

: “.-“. ‘ I .“..

. . .
.,.

. .
-a
v (t) =

“M “ 1’ “——

,..”. ~efi (J. .-

.s

(7,15)

Making’uee of the bbtained. value of the constant by equation
(6,1) gives also for the case of a point sour.ea disturbance
the law of variation of the scale of:turbulence L analogous
to equation (7,9) for the scale aocording to Taylor:

(7,16)

The above equations give a complete solution of the problem
of a source of given Bstrengthw M.

If, according to Taylor, the conaept of isotropy is
generalized to thq oaee pf.a unlfor$ flow wlt~-average .~e~oclty
U (for ~xample; BehShd & Ahreeh in the worklng”portion of a
wind tunnel) and the obtained formulas applied~in a (lalllean

(;#?13*em moving with velocity U then XallowZzlg in th%d maliner
behind the decay of the turbulence in the region of the fluld
moving with veloolty U, the result will be x= U(t - to)

-,.%”.

As ie known, Taylor gave alinear law, whichc.im.sufficiently
well confirmed by experiment; wh-il”6’?otir”ei@ohent differs from
unity, The reason for this probebly lies In the fact that
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the disturbance in-tl.ieteets are not of the eource type
but Initial dieturbanoea of finite magnitude and aleo In
the fact that pure diffusion without rconvection were
considered. -

The problem of the decay of the Intensity of the
turbulent disturbances for a given initial distribution
of the moment function eatlefying only the condition .of
finite dieturbanoe reducee to the $nte&ratlOn of equat~on
(7,10) for the initial oondition

!l?urnlngto the analogy with the propagation of heat an a“ “
five+imenelonal space,the general solution of the problem
.1s written in the form:

. ..

3’(r,t)
..!- .,. +=.:., .

1e

(2%/211v)=fl~-03
., -. ..:”- - ‘,

where

s: .,--:> “. “

..
6 Pa

~o(altaa,a3.a4,a5)t ‘e-~dal.. .da6 (7,19)

.-...,.
...* . ..

-1..
:..

I

. . , :-.,

“ ““:iy’ws-#=i;%,+r+ (xa%O)@:+ ..b”$(xp
a- ““.”-d ;“”L’. . .. .. .

.:, ,, :,”. -::a”’”’
,... ..’..

.:@?:a ~;?”; x~ .+’<.,...XB= ....““t .., ::(”7:20)
.....“:1):””.‘: : !“”-:”’-- .\.’. t.:-..~- .1 .

i -.,”;-;”””,’ ‘, .. . . . . . ..
. ,““.,

- P~#6idg;ta e@i6r~cal cci~rdin~~ed”’t-h,e‘choluo~i’or the element
:ofi:~dlumer:may”~bbs.an:u”frifinitel~‘ttiidsphedical ltiyeii0$ volume
equal to the product of the area of a five_dimeneional @phere
of radiue p by ~I@,’ that ie<

‘.-)- * ...-=- . s -.-...... .
. .,*..; ...- -;..-..m. ,.. . ..

. . .

,rn,q:&l~ons(“7,19) then becOmeB : .
. ...

.-.
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.-~o c..

1 “1

J
lN-r~t)=”__ . . zj(r, p.t)p’ e- & d;. (7s~21)-. .-F”..
... 48/z” (@= o. . .

.:,.. “.

where Zo(r~p Oi) denotoe” the, ayerage value of the funetio~
F. on a sphere of”radiue p deecribed about the point at

distance r from the origin of goordtnates. Paeming to the
limit when r -O It is noted that on”acoount of the assumed
initial distribution of F as a funotlon only of the dis-
tanoe r

>&..-,.

. .

(7,22)

This sSmple equati.onV#ets~,mlnes the law of d.eeay of the
turbulence Intensity giv”en by its Initial dletrlbution.

The above equation changes to eq.uatlon (7,15) If, re-
oalling the defiqitl~”~ yf source, the functio-fi E (p) is

ohosen thus; . ,.J.
..

.. .
.

.
,.

. . . . .1”: ....
● “.- . .. “.

$ . . . L *O(P) = = ‘=0.,

e
. . . . . . .,

I
-,.,k~. ”1. .

~o(p)?4dp- u“” “ “ ““””..:.....-. r & . . 0 . . -:, “ . . . : . .. . ... , ,,, , “.. ‘. “

.kt-li”.Qf,m~&tIeik@t- to’”iok~”I $~~~.~orl~arge.“
:.,..::. .:

t the”aeymptotls
form of. va(t) for,all 5nSt~al dletrlb~tions har$ng the
same diabu~han.ce- agreei with’ t~e” d~stribution for the ●ouroe
of the strength (moment),a property analogoue to the known
property of the dlstribut$on.bf hem-t.......

--.
.. ..

—.
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It is ieen that. the inttial dietrlbution of the dt8-
tuebanoe affecto the law of.deoay “of the turbulence, In
the case of a ● ouroe there existed an infinitely large
Initial intensity for an Infinitely small Snitial soale
and given strength- In order to evaluate, at learnt quali-
tatively, the effect of the initial scale oon~lder the
followihg initial dlstrlbutlon (stepped dietrlb”titlon)~. .,

~o(r) = O r>Lo
J

In this simple ease (7,22) affords

-a
p(t).+ .Vo

48G (JYK)6

The integrAl~is eakily computed and

1

+

v (t) = ~[v ‘rf (*) : . ~ .
J.d. ,

a Lo ~ evt

(

Loa
--— l+l&. —

4GR )1 (7.24)
Vt

.

LO-L

!

8vt

e P4 dp

o

givee=; ‘“‘:”’

f

Lo
The effect of the initial scale for small ~alues of —

m
may be taken into account by developing the function Erf
Into a 9eriee. After simple reductions it,approxi~atesm to:

3Erfs here d~notee the well known -werr”or $@ptionn

.: s “a ..

J

‘dg
Erfg = & ‘ i. dg “ “’”-

T lto

I



.. .
.“ ● :. .’ . ~ l;.:...,

Noting that tn the .givem .oase .
.. ... . ...

... .. ‘..0?
, ,

. p
L.! i: . . . .‘.

f

5 ..”
M ‘ .. .= j?n.(r)r4 dr. = $ ~oa,.’ZIo. .

,“. .. o . ““ “. “ ‘“ *
. . .,. : .. . .. . . . . .

$3

(7,25)
.

.

.
..

equation” (7,15) may, ‘;erconvenience of comparing the
ob%”ined e.quatlon with- the equation for .tha–ss::g~e (L 0=0)
of the same strength M, be rewritten as (7,25):

#.* .
,., . . .

. . . .

- x. ~+L.&, ..:Va(”t) ~ . “’

( )
(7,26)

28vT’r
48/X( Jz)6

The relative correction is seen to be proportional to the
square of the initial scale.

A check of the correctness of all the obtained equations
as well as of the fundamental theorem of the oonservatlon of
the disturbance moment on the basis of existing experimental
data 1s, unfortunately, extremely dlf$icult. The teste, which
in the near future wII1 be set up In the CAHI laboratorle@
under the direction of E. M. Minsky, will serve further to
develop the present concepts in th$s interesting field of
turbulent mot~on.

Translation by S. Relss,
I$ational Advisory Oommittee
$or Aeronautics. ““.

—.— -—
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